
MBARI Power Buoy Classification
Model for Monterey Bay
Goal

● Classify IFCB datastreams from Monterey Bay with enough fidelity to resolve broad
changes in community structure.

● Resolve changes in functional groups of social interest, ie, Harmful Algal Bloom-forming
organisms.

● Develop an operational framework where images are classified in near-real time.

Development
Jesse Lopez did the initial model development as a proof of concept. The convolutional
neural network (CNN) was trained on a set of images curated by Alexis Fischer from
IFCB data collected by the Kudela Lab at UCSC. The Xception model framework1 was
chosen based on classification performance metrics against other popular CNN
frameworks.

The model is trained and tested on a GPU node on the Hummingbird cluster, an HPC,
using Nvidia Telsa P100 GPU. Training logs can be saved and uploaded to TensorBoard
for review and record keeping.

Training Dataset
Models are only as good as the data that trains them. To date, training data is all driven
from IFCB104, and manual validation from members of the Kudela lab using the IFCB
Annotate tools. Training sets are generated from the ‘export_png_manual_fromROI.m’
Matlab routine, which generates .png files from the IFCB datasets stored on a Synology
NAS in the Kudela Lab. Manually classified images are then sorted into Training (80%),
Testing (10%), and Validation (10%). Testing and training datasets are used to train the
model. The validation dataset is used to evaluate model performance by quantifying
robustness.

Saving Models
The trained model is saved as saved_model.pb with an assets/ directory, which is used
to make graphs of the model, and the variables/ directory, where training checkpoints
are saved.

Version Control
Currently: All images used for training and testing are compressed and stored as a
.tar.gz file for archival. A plain text file (.csv) of all of the filenames for each class was

1 https://arxiv.org/abs/1610.02357

http://tensorboard.dev
http://arxiv.org/abs/1610.02357


created. This can be used to recreate the training set or to compare the difference with
subsequent model generations.

Options: Data Version Control
DVC is a git-based open-source version control software for MLOps. But, training and
testing data sets are on the order of 10s of gigabytes, so we need to develop a storage
solution. We can implement this on particle.shore at MBARI, but this will limit who can
access it. It is also inconvenient for current development since it mostly happens at
UCSC on the Hummingbird Cluster. Since both systems are on internal networks getting
them to connect is challenging.

One scalable solution would be to move all of the data storage and model storage to the
cloud like an S3 bucket. There are some opportunities to apply for a small research grant
for cloud compute credits (google, amazon) to prototype this.

Another solution would be to use a NAS at UCSC in the Kudela lab. This is less scalable
and might limit outside collaboration but could be implemented relatively easily and
quickly.

Embed metadata into .HDF for the CNN models

Option: Zenodo
Zenodo is an “open science” data repository that could be used for publishing and
versioning models and compressed training sets.

Applying the Model
Model predictions (ie, classification) are performed hourly when data are retrieved from
the MBARI Power Buoy IFCB. Classification is run on the particle.shore.mbari machine
using the CPU. Each ROI is assigned a probability for each class in the model. The
highest probability is selected as the “True” class. If the highest probability is below a
threshold set at 0.75, then the “True” is determined to be “unidentified.” In future work, it
will be worthwhile to perform some sensitivity analysis for the threshold to determine a
value that best balances type I errors against type II errors.

Data are then summed up for the sample period for each class and divided by the
sample volume to give a cell concentration value for each class for each sample period.
These data are appended to a plain-text (.csv) file. Those are used to create plots each
hour that is pushed to the CeNCOOS web server.

The approach of classification on demand reduces the computational requirements for
the dataset at any given time by distributing them throughout data collection and allows
for a near-realtime data analysis. This approach is unsuitable for classifying large
amounts of data beyond a dozen days worth of data. Under those circumstances, it

http://dvc.org
http://cloud.google.com/edu/researchers
http://aws.amazon.com/government-education/research-and-technical-computing/cloud-credit-for-research/
http://zenodo.org


would significantly more efficient to run the classification on a machine or cluster with
ample memory storage and a GPU.

Technical Workflow:
1. Extract Manual Classification data from Kudela Lab NAS (Synology Server) using

export_png_manual_fromROI.m routine from ifcb-analysis Matlab package.
2. Split manual classification data into roles using sort-images-by-role.ipynb

notebook:
Training (80%): These are used for training the model
Validation (10%): These are how the model validates its accuracy
Testing (10%): The model never sees these data, and they can be used
to test the robustness

3. Move sorted images to the hummingbird cluster at UCSC using the
hbfeeder.ucsc.edu

4. Place model training code (train-xception-hb.py) in the queue by running
training-ifcb.slurm.

5. Run model validation code (test-xception-hb.py) in the queue by running
test-ifcb.slurm.

http://github.com/hsosik/ifcb-analysis
http://git.ucsc.edu/pcdaniel/ifcb-training/-/blob/master/notebooks/sort-images-by-role.ipynb
http://git.ucsc.edu/pcdaniel/ifcb-training/-/blob/master/notebooks/sort-images-by-role.ipynb
http://hummingbird.ucsc.edu
http://git.ucsc.edu/pcdaniel/ifcb-training/-/blob/master/src/train-xception-hb.py
http://git.ucsc.edu/pcdaniel/ifcb-training/-/blob/master/training-ifcb.slurm
http://git.ucsc.edu/pcdaniel/ifcb-training/-/blob/master/src/test-xception-hb.py
http://git.ucsc.edu/pcdaniel/ifcb-training/-/blob/master/test-ifcb.slurm

